Uncomputably large integral points on algebraic plane curves?

نویسنده

  • J. Maurice Rojas
چکیده

We show that the decidability of an amplification of Hilbert’s Tenth Problem in three variables implies the existence of uncomputably large integral points on certain algebraic curves. We obtain this as a corollary of a new positive complexity result: the Diophantine prefixes ∃∀∃ and ∃∃∀∃ are generically decidable. This means, taking the former prefix as an example, that we give a precise geometric classification of those polynomials f ∈Z[v, x, y] for which the question ∃v∈N such that ∀x∈N ∃y∈N with f(v, x, y)=0? may be undecidable, and we show that this set of polynomials is quite small in a rigourous sense. (The decidability of ∃∀∃ was previously an open question.) The analogous result for the prefix ∃∃∀∃ is even stronger. We thus obtain a connection between the decidability of certain Diophantine problems, height bounds for points on curves, and the geometry of certain complex surfaces and 3-folds.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computations with Algebraic Curves

We present a variety of computational techniques dealing with algebraic curves both in the plane and in space. Our main results are polynomial time algorithms (1) to compute the genus of plane algebraic curves, (2) to compute the rational parametric equations for implicitly defined rational plane algebraic curves of arbitrary degree, (3) to compute birational mappings between points on irreduci...

متن کامل

Computing Integral Points on Elliptic Curves

By a famous theorem of Siegel [S], the number of integral points on an elliptic curve E over an algebraic number field K is finite. A conjecture of Lang and Demjanenko [L3] states that, for a quasiminimal model of E over K, this number is bounded by a constant depending only on the rank of E over K and on K (see also [HSi], [Zi4]). This conjecture was proved by Silverman [Si1] for elliptic curv...

متن کامل

Self-similar fractals and arithmetic dynamics

‎The concept of self-similarity on subsets of algebraic varieties‎ ‎is defined by considering algebraic endomorphisms of the variety‎ ‎as `similarity' maps‎. ‎Self-similar fractals are subsets of algebraic varieties‎ ‎which can be written as a finite and disjoint union of‎ ‎`similar' copies‎. ‎Fractals provide a framework in which‎, ‎one can‎ ‎unite some results and conjectures in Diophantine g...

متن کامل

Visualization of Points and Segments of Real Algebraic Plane Curves

This thesis presents an exact and complete approach for visualization of segments and points of real plane algebraic curves given in implicit form f(x, y) = 0. A curve segment is a distinct curve branch consisting of regular points only. Visualization of algebraic curves having self-intersection and isolated points constitutes the main challenge. Visualization of curve segments involves even mo...

متن کامل

Plane Algebraic Curves

We go over some of the basics of plane algebraic curves, which are planar curves described as the set of solutions of a polynomial in two variables. We study many basic notions, such as projective space, parametrization, and the intersection of two curves. We end with the group law on the cubic and search for torsion points.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Theor. Comput. Sci.

دوره 235  شماره 

صفحات  -

تاریخ انتشار 2000